3.1911 \(\int \sqrt {a d e+(c d^2+a e^2) x+c d e x^2} \, dx\)

Optimal. Leaf size=159 \[ \frac {\left (a e^2+c d^2+2 c d e x\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c d e}-\frac {\left (c d^2-a e^2\right )^2 \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 c^{3/2} d^{3/2} e^{3/2}} \]

[Out]

-1/8*(-a*e^2+c*d^2)^2*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e
*x^2)^(1/2))/c^(3/2)/d^(3/2)/e^(3/2)+1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/e

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {612, 621, 206} \[ \frac {\left (a e^2+c d^2+2 c d e x\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c d e}-\frac {\left (c d^2-a e^2\right )^2 \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 c^{3/2} d^{3/2} e^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

((c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*c*d*e) - ((c*d^2 - a*e^2)^2*ArcTa
nh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*c^
(3/2)*d^(3/2)*e^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx &=\frac {\left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c d e}-\frac {\left (c d^2-a e^2\right )^2 \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 c d e}\\ &=\frac {\left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c d e}-\frac {\left (c d^2-a e^2\right )^2 \operatorname {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 c d e}\\ &=\frac {\left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c d e}-\frac {\left (c d^2-a e^2\right )^2 \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 c^{3/2} d^{3/2} e^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.49, size = 214, normalized size = 1.35 \[ \frac {\sqrt {c} \sqrt {d} \left (\sqrt {c} \sqrt {d} \sqrt {e} \sqrt {c d} (d+e x) \left (a^2 e^3+a c d e (d+3 e x)+c^2 d^2 x (d+2 e x)\right )-\left (c d^2-a e^2\right )^{5/2} \sqrt {a e+c d x} \sqrt {\frac {c d (d+e x)}{c d^2-a e^2}} \sinh ^{-1}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d} \sqrt {c d^2-a e^2}}\right )\right )}{4 e^{3/2} (c d)^{5/2} \sqrt {(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(Sqrt[c]*Sqrt[d]*(Sqrt[c]*Sqrt[d]*Sqrt[c*d]*Sqrt[e]*(d + e*x)*(a^2*e^3 + c^2*d^2*x*(d + 2*e*x) + a*c*d*e*(d +
3*e*x)) - (c*d^2 - a*e^2)^(5/2)*Sqrt[a*e + c*d*x]*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)]*ArcSinh[(Sqrt[c]*Sqrt[
d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])]))/(4*(c*d)^(5/2)*e^(3/2)*Sqrt[(a*e + c*d*x)*(d
+ e*x)])

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 412, normalized size = 2.59 \[ \left [\frac {{\left (c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) + 4 \, {\left (2 \, c^{2} d^{2} e^{2} x + c^{2} d^{3} e + a c d e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{16 \, c^{2} d^{2} e^{2}}, \frac {{\left (c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (2 \, c^{2} d^{2} e^{2} x + c^{2} d^{3} e + a c d e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{8 \, c^{2} d^{2} e^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/16*((c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e
^4 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*
c*d*e^3)*x) + 4*(2*c^2*d^2*e^2*x + c^2*d^3*e + a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^2*d^
2*e^2), 1/8*((c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e
^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) +
 2*(2*c^2*d^2*e^2*x + c^2*d^3*e + a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^2*d^2*e^2)]

________________________________________________________________________________________

giac [A]  time = 0.26, size = 153, normalized size = 0.96 \[ \frac {1}{4} \, \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e} {\left (2 \, x + \frac {{\left (c d^{2} + a e^{2}\right )} e^{\left (-1\right )}}{c d}\right )} + \frac {{\left (c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} e^{\left (-\frac {3}{2}\right )} \log \left ({\left | -c d^{2} - 2 \, {\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )} \sqrt {c d} e^{\frac {1}{2}} - a e^{2} \right |}\right )}{8 \, \sqrt {c d} c d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

1/4*sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e)*(2*x + (c*d^2 + a*e^2)*e^(-1)/(c*d)) + 1/8*(c^2*d^4 - 2*a*c*d^
2*e^2 + a^2*e^4)*e^(-3/2)*log(abs(-c*d^2 - 2*(sqrt(c*d)*x*e^(1/2) - sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e
))*sqrt(c*d)*e^(1/2) - a*e^2))/(sqrt(c*d)*c*d)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 265, normalized size = 1.67 \[ -\frac {a^{2} e^{3} \ln \left (\frac {c d e x +\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}}{\sqrt {c d e}}+\sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}\right )}{8 \sqrt {c d e}\, c d}+\frac {a d e \ln \left (\frac {c d e x +\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}}{\sqrt {c d e}}+\sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}\right )}{4 \sqrt {c d e}}-\frac {c \,d^{3} \ln \left (\frac {c d e x +\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}}{\sqrt {c d e}}+\sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}\right )}{8 \sqrt {c d e}\, e}+\frac {\left (2 c d e x +a \,e^{2}+c \,d^{2}\right ) \sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}}{4 c d e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2),x)

[Out]

1/4*(2*c*d*e*x+a*e^2+c*d^2)*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)/c/d/e-1/8/d/c*e^3*ln((c*d*e*x+1/2*a*e^2+1/
2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/(c*d*e)^(1/2)*a^2+1/4*d*e*ln((c*d*e*x+1/2*a*e^
2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/(c*d*e)^(1/2)*a-1/8*d^3*c/e*ln((c*d*e*x+1/
2*a*e^2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/(c*d*e)^(1/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?`
 for more details)Is a*e^2-c*d^2 zero or nonzero?

________________________________________________________________________________________

mupad [B]  time = 0.18, size = 131, normalized size = 0.82 \[ \left (\frac {x}{2}+\frac {c\,d^2+a\,e^2}{4\,c\,d\,e}\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}-\frac {\ln \left (2\,\sqrt {\left (a\,e+c\,d\,x\right )\,\left (d+e\,x\right )}\,\sqrt {c\,d\,e}+a\,e^2+c\,d^2+2\,c\,d\,e\,x\right )\,\left (\frac {{\left (c\,d^2+a\,e^2\right )}^2}{4}-a\,c\,d^2\,e^2\right )}{2\,{\left (c\,d\,e\right )}^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2),x)

[Out]

(x/2 + (a*e^2 + c*d^2)/(4*c*d*e))*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2) - (log(2*((a*e + c*d*x)*(d + e
*x))^(1/2)*(c*d*e)^(1/2) + a*e^2 + c*d^2 + 2*c*d*e*x)*((a*e^2 + c*d^2)^2/4 - a*c*d^2*e^2))/(2*(c*d*e)^(3/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2)), x)

________________________________________________________________________________________